Tutorato 6 CP210

Docente: Pietro Caputo Esercitatrice: Elisabetta Candellero Tutori: Valeria Cinelli, Federica Fino Giovedì 18 aprile 2019

Esercizio 1. Sia X una variabile aleatoria uniforme su [0,1]. Calcolare:

- (a) $\mathbb{E}[3X^2 7X + 2]$
- (b) $\mathbb{E}[2e^X]$

Esercizio 2. Sia X una variabile aleatoria continua con densità

$$f_X(x) = -\log(x^c)\mathbf{1}_{(0,1)}(x).$$

- 1. Si determini il valore di c affinchè f_X sia effettivamente una densità.
- 2. Sia $Y = -\log(X)$. Si determini la distribuzione di Y.

Esercizio 3. La funzione di densità di una variabile aleatoria continua X è

$$f(x) = \begin{cases} a + bx^2 & \text{se } 0 < x < 1\\ 0 & \text{altrimenti} \end{cases}$$

con $a, b \in \mathbb{R}$.

- (a) Calcola i coefficienti reali a e b sapendo che $\mathbb{E}[X] = \frac{3}{5}$.
- (b) Calcola la varianza di X.
- (c) Calcola la funzione di distribuzione di X.

Esercizio 4. Sia X una variabile aleatoria di densità:

$$f(x) = \begin{cases} \frac{1}{x^2} & \text{se } x > 1\\ 0 & \text{altrimenti} \end{cases}$$

Determinare la densità e la media della variabile aleatoria $Y = \ln(X)$.

Esercizio 5. La seguente funzione di densità di probabilità

$$f(x) = \begin{cases} 3x^{-4} & \text{se } x > 1\\ 0 & \text{altrimenti} \end{cases}$$

descrive la distribuzione del reddito mensile (in migliaia di euro) di una popolazione di individui caratterizzata da redditi mensili maggiori di 1000 euro.

- (a) Si calcoli la probabilità che il reddito di un individuo sia superiore a 2000 euro.
- (b) Si calcoli la probabilità che il reddito di un individuo sia compreso tra 1,5 e 2 mila euro.
- (c) Si calcoli media e varianza del reddito mensile.
- (d) Estratto a sorte un campione di 5 soggetti dalla popolazione, si determini la probabilità che almeno un soggetto abbia un reddito superiore a 2 mila euro.

Esercizio 6. Per essere il vincitore del gioco che segue, si devono vincere tre partite consecutive. Il gioco dipende dal valore di U, una variabile aleatoria uniforme su (0,1). Se U > 0.1 allora vincete la prima partita; se U > 0.2 vincete la seconda partita; se U > 0.3 vincete la terza partita.

- (a) Determinare la probabilità di vincere la prima partita.
- (b) Determinare la probabilità condizionata di vincere la seconda partita sapendo di aver vinto la prima.
- (c) Determinare la probabilità condizionata di vincere la terza partita sapendo di aver vinto la prima e la seconda.
- (d) Determinare la probabilità di essere vincitore del gioco.

Esercizio 7. Una scatola contiene due tipi di batterie. Quando viene usata, il tempo di vita in ore della batteria di tipo i è una variabile aleatoria esponenziale di parametro λ_i , con i = 1, 2. Una pila scelta a caso dalla scatola sarà di tipo i con probabilità p_i , con $p_1 + p_2 = 1$. Se una pila scelta a caso funziona ancora dopo t ore, qual è la probabilità che essa funzioni ancora per altre s ore?

Esercizio 8. Le prove riguardanti l'innocenza o la colpevolezza di un imputato in un'inchiesta criminale si possono riassumere con il valore di una variabile aleatoria esponenziale X, la cui media μ dipende dalla effettiva colpevolezza dell'imputato: ovvero $\mu=1$ se è innocente e $\mu=2$ se è colpevole. La giuria giudica poi l'imputato colpevole se X>c per un valore opportuno di c.

- (a) Quale deve essere il valore di c se la giuria vuole essere certa al 95% di non condannare un innocente?
- (b) Utilizzando il valore di c trovato nel punto (a), qual è la probabilità che un imputato colpevole sia condannato?